

Overview of Molecular Docking

Presenter: Msc. Phan Tieu Long

"That's Dr Arnold Moore. He's conducting an experiment to test the theory that most great scientific discoveries were hit on by accident." Drawing by Hoff; © 1957 The New Yorker Magazine, Inc.

Drug discovery

A good drug (e.g., kills virus)

Challenges

Experimental facilities in industry can only test 10⁵ compounds/day

In silico methods

Sliwoski G, et al. Computational methods in drug discovery (2013)

GLOBAL PRIVATE INVESTMENT IN AI BY FOCUS AREA, 2019 VS 2020

Total Investment (in Millions of U.S. Dollars)

The fourth paradigm of science

In silico methods

Computational drug discovery: three schemes

Sanchez-Lengeling et al., Science 361, 360-365 (2018)

In silico methods

De novo design

Save chemists time by narrowing down the chemical space of viable molecules *faster and more efficiently*.

Can be used in conjunction with existing (traditional) methods.

Pros and cons

Simulation			
Pros	Cons		
 Replace/provoke/explain experiments The most accurate method among 3 aforementioned schemes 	 Time-consuming and usually slower than other schemes Require decent computational 		
- Provides initial hypotheses about the binding mode of the compounds	resources - The performance is highly dependent on the biological system under study		

Introduction

- One of the most frequently used methods in structure-based drug design
- **Predict the binding-conformation** of small molecule ligands to the appropriate target binding site to form a stable complex. *Docking does not predict bioactivity!*
- Based on "Lock-and-key theory " (rigid docking) and "Induced fit theory" (flexible docking).
- Docking can be achieved through two interrelated steps: 1. sampling conformations of the ligand in the active site of the protein; 2. ranking these conformations via a **scoring function**.

Introduction

Schematic illustration of docking a small molecule ligand (green) to a protein target (black) producing a stable complex

Docking of a small molecule (green) into the crystal structure 17

Types of complexes

Protein – Protein complex

Protein – Nucleotide complex

18

Molecular docking 4 main applications:

- Reproduce the binding mode of X-ray complex
- 2. Predicting the binding mode of a known active ligands
- Predicting the binding affinities of related compounds from a known active series
- 4. Identifying new ligands using Virtual screening

Applications

Algorithms	Characteristic
Matching algorithms	Geometry-based, suitable to VS and database enrichment for its high speed
Incremental construction	Fragment-based and docking incrementally
MCSS	fragment-based methods for the de novo design
LUDI	fragment-based methods for the de novo design
Monte Carlo	Stochastic search
Genetic algorithms	Stochastic search
Molecular dynamics	For further refinement after docking

Current algorithms and their characteristics used in molecular docking

Molecular Docking: A powerful approach for structure-based drug discovery (2011)

Small molecule conformational search methods

Conformational search

Scoring function

Molecular docking: step by step

DockStream: a docking wrapper to enhance de novo molecular design. Journal of Cheminformatics (2021)

New approach

Overview of molecular docking procedure

DockStream: a docking wrapper to enhance de novo molecular design. Journal of Cheminformatics (2021)

Validation - Analysis

Validation

Cross dock Compare

Redocking for *docking power*

Crossdocking for screening power

Validation

27

Binding energy: -10.10 kcal/mol

Analysis

Title	Docking score	Glide Gscore	Glide Emodel
33	-10.849	-10.849	-126.527
36	-10.670	-10.670	-126.302
31	-10.598	-10.598	-119.240
42	-10.512	-10.512	-116.183
32	-10.468	-10.468	-118.528
61	-10.446	-10.446	-109.465
9	-10.429	-10.429	-122.974
39	-10.041	-10.041	-113.930
62	-9.517	-9.517	-106.098
37	-9.470	-9.477	-96.283
19	-9.407	-9.407	-99.511
14	-9.385	-9.385	-98.541
15	-9.383	-9.383	-116.632
35	-9.352	-9.352	-93.823
18	-9.268	-9.268	-97.559
34	-9.258	-9.272	-90.379
41	-9.091	-9.097	-92.741

Docking score table

Analysis

Scoring functions in docking

Molecular docking Molecular docking types

Types of molecular docking methods according to complexity

Other types of docking

Pros and cons

- Molecular docking				
Pros	Cons			
 Faster and simpler than other methods in simulation Adaptable to different virtual screening protocols Strong computational resources are not required Suitable for homology approach 	 Time-consuming (flexible docking), under-performance (rigid docking) Often results in a high false positive rate Require post-processing approaches (flexible minimization of the complexes, MD) for better results Depend on experimental 3D 			

Molecular docking software

Software

Overview

Most used docking software from 1990 to 2013

Software

Overview

Thank you for your attention

Does anyone have any questions?